Visual cortical inputs to deep layers of cat's superior colliculus

Author:

Berson D. M.,McIlwain J. T.

Abstract

In the superior colliculi of cats anesthetized with ketamine, 84% of identified output cells of the deep layers could be driven by shocks to the contralateral optic disk, optic chiasm, or ipsilateral optic tract; 75% of these deep-layer cells had response latencies reflecting a polysynaptic influence of retinal Y-cells. Following large, acute lesions of the ipsilateral occipital cortex (including visual areas 17, 18, 19, and the posteromedial lateral suprasylvian area (PMLS), only 18% of deep-layer output cells were driven by electrical stimulation of the optic pathway and only 4% exhibited an indirect Y-cell influence. Thus, one or more of these visual areas may be important for the relay of retinal information, and particularly of Y-cell information, to the deep layers of the superior colliculus. This hypothesis is supported by the observation that intracortical stimulation in areas 17, 18, 19, and PMLS activated many cells of the ipsilateral, deep tectal layers at latencies consistent with those exhibited by the indirect Y-cell pathway. The distributions of activation latencies were similar to those observed in the superficial layers, raising the possibility that at least some of the cortical influence on the deep layers may be mediated by direct connections. Cells of the deep layers were more likely to be excited by a cortical stimulus that activated cells immediately above them in the superficial layers than by a stimulus that did not. This indicates that the functional connections between visual cortex and the deep collicular layers exhibit a topographic orderliness similar to that previously described for corticotectal projections to the superficial layers. These results provide further evidence that the visual cortex exerts a significant influence on cells of the deep collicular strata and that the pathways involved are capable of mediating the indirect, retinal Y-cell input to these neurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3