Organization of synaptic inputs to paracerebral feeding command interneurons of Pleurobranchaea californica. III. Modifications induced by experience

Author:

Davis W. J.,Gillette R.,Kovac M. P.,Croll R. P.,Matera E. M.

Abstract

Phasic paracerebral feeding command interneurons (PCP's) were studied in whole-animal preparations of Pleurobranchaea drawn from four populations with different behavioral histories: food avoidance conditioned, yoked controls, food satiated, and naive. PCP responses to chemosensory food stimuli (liquefied squid) and mechanosensory touch stimuli (tactile stimulation of anterior and posterior structures) were recorded intracellularly, scored blind, and compared quantitatively across the four populations. PCP's from avoidance-conditioned specimens (10, 18, 19) showed decreased excitatory and increased inhibitory responses to food and touch in comparison with naive (untrained) specimens. Control animals did not show these effects. PCP's from satiated specimens showed decreased excitatory and increased inhibitory responses to food and touch in comparison with PCP's from control, naive, and conditioned specimens. Inhibitory postsynaptic potentials (IPSPs) induced in PCP's of conditioned and satiated specimens by food and touch are indistinguishable in amplitude and waveform from IPSPs produced in the same PCP's by the previously described cyclic inhibitory network (CIN; Ref. 13). In addition, tonic paracerebral neurons (PCT's) that lack input from the CIN, are not inhibited but rather are excited in trained and satiated animals. Therefore the inhibitory responses to food and touch by PCP's of conditioned and satiated specimens appear to be mediated by the CIN. This study demonstrates that associative and nonassociative processes (learning and food satiation, respectively) manifest similarly at the level of command interneurons. The findings furnish a neurophysiological explanation for behavioral motivation in Pleurobranchaea, namely, modulation of the balance of excitation/inhibition in command neurons controlling the corresponding behavior. A cellular model of food avoidance learning and food satiation is formulated to account for these data, based on the identified neural circuitry of the paracerebral command system (15, 17).

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3