Fast ballistic arm movements triggered by visual, auditory, and somesthetic stimuli in the monkey. II. Effects of unilateral dentate lesion on discharge of precentral cortical neurons and reaction time

Author:

Spidalieri G.,Busby L.,Lamarre Y.

Abstract

Single-unit recordings from motor cortex (area 4) were obtained before and after dentate lesion in two monkeys executing fast elbow flexions and extensions in response to randomly presented visual, auditory, and somesthetic stimuli. There were no starting or ending reference points or preparatory signals. Monkeys were trained to perform movements larger than 15 degrees within 500 ms of the stimulus presentation. After electrolytic lesion of the dentate nucleus ipsilateral to the trained arm, changes in reaction time (RT) were observed. Mean daily RTs of movements triggered by light and sound were lengthened by 50-70 ms. RTs of movements triggered by somesthetic stimuli were not changed in one monkey, whereas a small increase of only 20 ms was observed in the other animal. Spontaneous firing of precentral neurons was about the same before and after dentate lesion. However, movement-related responses of cortical neurons were affected by the lesion. Whenever there was an increase in RT according to the triggering stimuli, a corresponding increase in the response time of neurons (RS) appeared. Both RS and RT increased by the same amount when movements were triggered by visual and auditory stimuli, whereas they remained about the same when somesthetic stimuli were used to trigger movements. In contrast, the time interval between the appearance of the change of neuronal firing and onset of arm displacement (RM) was not modified after the lesion. Gating of sensory conditioning inputs and modification of RT by the presentation of more than one stimulus were not abolished by dentate lesion. As a whole, the effects of dentate lesion on motor cortical neurons are consistent with the hypothesis that the neocerebellum controls the initiation of simple ballistic limb movements by controlling the discharge of motor cortex neurons. The effects could be attributed to the withdrawal of a facilitatory influence of dentate neurons on the motor cortical cells, particularly for movements triggered by teleceptive inputs.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3