Inhibition of spinal dorsal horn neuronal responses to noxious skin heating by lateral hypothalamic stimulation in the cat

Author:

Carstens E.,Fraunhoffer M.,Suberg S. N.

Abstract

The responses of single lumbar dorsal horn units to noxious radiant heating (50 degrees C, 10 s) of glabrous foot pad skin were recorded in cats anesthetized with sodium pentobarbital and 70% N2O. The heat-evoked responses of each of 38 units were markedly reduced during electrical stimulation (100-ms trains at 100 Hz, 3/s, 25-300 microA) in the lateral hypothalamic area (LH). LH sites at which stimulation inhibited dorsal horn unit heat-evoked responses were mapped by systematically varying the position of the stimulating electrode. Inhibition was generated at posterior through anterior hypothalamic levels in a region extending laterally from the periventricular gray (PVG) to the cerebral peduncles on both sides and ventrally to the base of the brain. The magnitude of inhibition increased with graded increases in LH stimulation intensity. Respective mean current intensities at threshold for generating inhibition were 27.6 +/- 17.4 (SD) microA for contralateral and 30.1 +/- 23.7 microA for ipsilateral LH stimulation. Dorsal horn unit responses to a series of graded noxious heat stimuli generally increased linearly from threshold (38-45 degrees C) to 52 degrees C. The slopes of such linear temperature-response functions were reduced, with no significant change in threshold, when the temperature series was repeated during concomitant ipsilateral LH stimulation. Contralateral LH stimulation produced similar slope reductions but additionally produced a significant mean threshold increase of 1.7 degrees C. The inhibitory effect of LH stimulation was significantly reduced in nine units from a mean of 28 +/- 18% of control to a mean of 59 +/- 18% following systemic administration of the serotonin (5-hydroxytryptamine, 5-HT) antagonist, methysergide (0.3-1 mg/kg). Possible functional relationships of LH with brain stem inhibitory systems and its role in analgesic mechanisms are discussed.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3