Electrotonic parameters of rat dentate granule cells measured using short current pulses and HRP staining

Author:

Durand D.,Carlen P. L.,Gurevich N.,Ho A.,Kunov H.

Abstract

The passive electrotonic parameters of nerve cells in the dentate gyrus of the rat were studied in vitro. Intracellular recordings from 30 granule cells and 3 pyramidal basket cells followed by intracellular injection of horseradish peroxidase (HRP), allowed calculations of input resistance (RN), membrane time constant (tau m), electrotonic length (L), ratio of dendritic to somatic conductance (rho), membrane specific capacitance and resistance (Rm, Cm), and specific axoplasmic resistance (Ri). The analysis of the voltage decays from long saturating (100 ms) and short (0.5 ms) current pulses showed that the short-pulse method gave better resolution for the measurement of the time constants and avoided some of the time-dependent nonlinearities but required larger currents than the long pulse. Morphological analysis of 49 branching points taken from the dendritic trees of granule cells showed that the branching power, n, is equal to 1.56 +/- 0.186 and was fairly constant throughout the tree. Given the fact that all dendrites have approximately the same length and number of branch points, the granule cell dendritic tree can be meaningfully collapsed into an equivalent cable. Moreover, electrophysiological data suggested that the cable had a "sealed" end or at least a high-impedance termination. Based on an equivalent cable model with a sealed end and a lumped soma impedance, a method was implemented to analyze the multiexponential decays from hyperpolarizing current pulses and to solve the equations of the model. This was done successfully in only 40% of the cells and yielded the following mean values for L = 1.13 and rho = 7.58. From the measurements of the soma surface area (S) and the equivalent cable diameter (D), the average specific membrane parameters were calculated: Rm = 2,726 alpha x cm2, Cm = 5.24 microF/cm2, Ri = 101 alpha x cm. The input resistance and time constant of the granule cells as measured from the short-pulse technique averaged to RN 58.57 M alpha and tau m = 16.21 ms. The failure of the model to fit 60% of the cells was interpreted to be due to the presence of a somatic shunt resulting from electrode injury, tonic synaptic activity, a lower somatic membrane specific resistance, or electronic coupling.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3