Protein Phosphatases Mediate Depotentiation Induced by High-Intensity Theta-Burst Stimulation

Author:

Kang-Park Maeng-Hee1,Sarda Meredith A.1,Jones Katherine H.1,Moore Scott D.23,Shenolikar Shirish1,Clark Suzanne3,Wilson Wilkie A.13

Affiliation:

1. Department of Pharmacology and Cancer Biology and

2. Department of Psychiatry, Duke University Medical Center, Durham, North Carolina 27710; and

3. Neurology Research Laboratory, Veterans Administration Medical Center, Durham, North Carolina 27705

Abstract

We have previously reported that varying stimulus intensity produces qualitatively different types of synaptic plasticity in area CA1 of hippocampal slices: brief low-intensity (LI) theta-burst (TB) stimuli induce long-term potentiation (LTP), but if the stimulus intensity is increased (to mimic conditions that may exist during seizures), LTP is not induced; instead, high-intensity (HI) TB stimuli erase previously induced LTP (“TB depotentiation”). We now have explored the mechanisms underlying TB depotentiation using extracellular field recordings with pharmacological manipulations. We found that TB depotentiation was blocked by okadaic acid and calyculin A (inhibitors of serine/threonine protein phosphatases PP1 and PP2A), FK506 (a specific blocker of calcineurin, a Ca2+/calmodulin (CaM) protein phosphatase), and 8-Br-cAMP (an activator of protein kinase A) with 3-isobutyl-1-methylxanthine (IBMX, a phosphodiesterase inhibitor). These results suggest that protein phosphatase pathways are involved in the TB depotentiation similar to other type of down-regulating synaptic plasticity such as low-frequency stimulation (LFS)-induced long-term depression (LTD) and depotentiation in the rat hippocampus. However, TB depotentiation and LFS depotentiation could have differential functional significance.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3