Three simple steps to improve the interpretability of EEG-SVM studies

Author:

Joucla Coralie12ORCID,Gabriel Damien13,Ortega Juan-Pablo4,Haffen Emmanuel135

Affiliation:

1. Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive (LINC), Université de Bourgogne Franche-Comté, Besançon, France

2. FEMTO-ST Institute (CNRS/Université de Bourgogne Franche Comté), Besançon, France

3. Hôpital Universitaire CHRU, Besançon, France

4. Division of Mathematical Sciences, Nanyang Technological University, Singapore

5. Clinical Psychiatry, Hôpital Universitaire CHRU, Besançon, France

Abstract

Machine-learning systems that classify electroencephalography (EEG) data offer important perspectives for the diagnosis and prognosis of a wide variety of neurological and psychiatric conditions, but their clinical adoption remains low. We propose here that much of the difficulties translating EEG-machine-learning research to the clinic result from consistent inaccuracies in their technical reporting, which severely impair the interpretability of their often-high claims of performance. Taking example from a major class of machine-learning algorithms used in EEG research, the support-vector machine (SVM), we highlight three important aspects of model development (normalization, hyperparameter optimization, and cross-validation) and show that, while these three aspects can make or break the performance of the system, they are left entirely undocumented in a shockingly vast majority of the research literature. Providing a more systematic description of these aspects of model development constitute three simple steps to improve the interpretability of EEG-SVM research and, in fine, its clinical adoption.

Funder

Agence Nationale de la Recherche

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3