Electrophysiology of lateral and dorsal terminal nuclei of the cat accessory optic system

Author:

Grasse K. L.,Cynader M. S.

Abstract

Visual responses were examined quantitatively in 96 units in the lateral (LTN) and dorsal (DTN) terminal nuclei of the cat accessory optic system (AOS). The receptive fields of LTN and DTN cells were quite large, with an average diameter of approximately 60 degrees. Individual cell receptive fields, which could be as small as 30 degrees vertically by 15 degrees horizontally or as large as 100 by 100 degrees, always included the area centralis. Large, moving textured stimuli provoked optimal modulation in these cells. In response to a 100 by 80 degrees random-dot pattern moving at a constant velocity, nearly all cells in both the LTN and DTN displayed a high degree of direction selectivity. Directional response profiles were subjected to a vector analysis that generated two quantities proportional to the direction and magnitude of the major excitatory (E vectors) and inhibitory (I vectors) responses of individual cells. Directional vectors of the LTN displayed a strikingly bimodal distribution: E vectors of individual LTN cells pointed either upward (25 of 49) or downward (23 of 49). I vectors also pointed either up or down in a direction opposite to that of the E vector for the same cell. E and I vectors in both LTN and DTN units were separated by approximately 180 degrees. With few exceptions, E vectors of DTN cells pointed in a horizontal-medial direction, while DTN I vectors pointed in a horizontal-lateral direction. A relatively broad range of stimulus velocities (0.8-102.4 degrees/s) evoked maximal excitation in individual LTN units. The majority of LTN cells, however, achieved maximal excitation at velocities between 0.8 and 12.8 degrees/s. The deepest inhibition was elicited over a range of velocities from 0.2 to 102.4 degrees/s, with two major peaks at 0.8 and 12.8 degrees/s. A similar range of velocity sensitivity was observed in DTN cells: maximal excitation was obtained for stimulus velocities from 1.6 to 102.4 degrees/s, with most DTN cells showing the greatest excitatory response between 6.4 and 12.8 degrees/s. A broad range of inhibitory velocity tuning was also observed in DTN units, with most cells exhibiting the deepest inhibitory modulation at 25.6 degrees/s. The majority of LTN and DTN units were driven most effectively through the eye contralateral to the recording site. Nonetheless, a large percentage of LTN (78%) and DTN (93%) cells could be driven to some extent through both eyes. Despite this conspicuous ipsilateral eye influence, no units were found in either the LTN or the DTN that were driven solely through the ipsilateral eye.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3