Phase-dependent responses evoked in limb muscles by stimulation of medullary reticular formation during locomotion in thalamic cats

Author:

Drew T.,Rossignol S.

Abstract

Electromyographic and kinematic responses of all four limbs were studied when loci within the medullary reticular formation (MRF) were stimulated (30-ms train of 0.2-ms pulses at 300 Hz, strength 35 microA) during treadmill locomotion in spontaneously walking thalamic cats. Responses could be evoked in flexor or extensor muscles of any given limb by such stimulation, depending on the time during the step cycle at which the stimulus was delivered. Stimulation normally excited flexor muscles but could either excite or inhibit extensor muscles depending on the exact position of the electrode. Excitatory responses in extensor muscles were often followed by a short period of inhibition of activity. The responses in muscles of the opposing limbs of the same girdle were, in general, reciprocally organized. For instance, a stimulus delivered during the swing phase of the ipsilateral limb normally evoked excitatory responses both in flexor muscles of that limb and in extensor muscles of the contralateral limb. The same stimulus delivered during the stance phase of the ipsilateral limb evoked excitatory responses in ipsilateral extensor muscles and in contralateral flexor muscles. Responses were also observed at the same time in fore- and hindlimbs that were well organized with respect to the locomotor cycle. Seventy-five percent of all responses occurred within 8-20 ms of the onset of the stimulus train. Responses evoked in muscles of the opposing limbs of one girdle (e.g., a flexor of one limb and an extensor of the other) had similar latencies, suggesting that the responses were synchronously organized on both sides of the body rather than one being a consequence of the other. Although the majority of responses in a given muscle were elicited during its period of activity, responses could occasionally be evoked when there was no activity in that muscle or could be absent despite activity in the muscle. The short trains of stimuli were normally potent enough to affect the limb trajectory, which reflected changes in the onset or the offset of the activity of most muscles. Thus the stimuli effectively changed both the duration of the period of activity in these muscles and the overall step cycle. Longer trains of stimuli (200 ms) markedly amplified these changes to the point of completely resetting the locomotor rhythm.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3