Topographic organization of somatosensory corticotectal influences in cat

Author:

Clemo H. R.,Stein B. E.

Abstract

Using electrophysiological techniques, the present study demonstrated that substantial direct somatosensory cortical influences on the superior colliculus (SC) originate from three areas: a) SIV, b) para-SIV (the cortex adjacent to SIV but deeper in the anterior ectosylvian sulcus (AES) and for which no topography has yet been described), and c) the rostral suprasylvian sulcus. Influences also appeared to originate from SI and SII, but these may have been indirect. Detailed examination of the AES revealed that these corticotectal projections are topographically organized, and stimulation of a given cortical locus was observed to affect only those cells in the SC whose receptive fields overlapped those of cells at the stimulation site. A similar receptive-field register was found between the suprasylvian sulcus and the SC. Within this topographic pattern, considerable convergence was evident and an individual SC cell could be influenced from a surprisingly large cortical area. This was particularly evident within the representation of the forelimb. Thus, an SC cell with a receptive field covering the forelimb and paw could receive convergent input from many cortical cells with receptive fields covering all or restricted portions of this body region. Considerable corticotectal divergence also was observed within this general topographic scheme. For example, a given corticotectal site representing the digits sent projections to many different SC cells that included the digits within their receptive fields. These data are more consistent with a block-to-block than a point-to-point corticotectal projection. Somatosensory corticotectal projections excited only those SC cells that could also be activated by peripheral somatosensory stimuli. Similarly, the caudal AES, which contains auditory cells, excited only those SC cells activated also by peripheral auditory stimuli. Yet convergent influences from both auditory and somatosensory regions of the AES were observed in the SC cells that could be activated by both auditory and somatosensory stimuli. These data indicate that the AES is a major source of excitatory input to cells of the deep laminae of the SC. Since it is these deep laminae cells that project to premotor regions of the brain stem and the spinal cord, it is reasonable to suppose that the AES has a significant impact on the output signals of the SC that initiate the orientation responses to peripheral sensory stimulation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3