Quality coding of a complex odorant in an invertebrate

Author:

Derby C. D.,Ache B. W.

Abstract

Mechanisms whereby the olfactory system of the spiny lobster codes food odors were quantitatively analyzed. A 23-component chemical mixture, with a composition based on a tissue extract from a known food of lobsters, and 8 of the mixture's components were used to describe responses of single cells at two neural levels: a) olfactory receptor cells and b) low-order interneurons projecting from the main olfactory center of the brain. Cluster analysis identified six classes of narrowly tuned receptor cells. Interneurons, on the other hand, were significantly more broadly tuned than receptor cells and could not be grouped into a small number of discrete, highly correlated cell types. Nonetheless, some chemosensory interneurons (unimodal interneurons) had specificities as narrow as receptor cells. Across-neuron correlations between stimuli showed that the increase in neuronal breadth of responsiveness from the level of receptors to the level of interneurons was paralleled by an increase in similarity in across-neuron patterns and, therefore, a decline in ability to discriminate between any two compounds. Across-neuron correlations between concentrations of a given compound showed that stimulus quality had a much stronger effect on across-neuron patterns than did stimulus quantity and, hence, stimulus qualities could be distinguished in spite of concurrent changes in stimulus quantity. Coding of odor quality could be accomplished at the receptor level by a labeled-lines code. At the interneuronal level, odor quality appears to be coded by across-fiber patterns. However, the finding that unimodal interneurons were as narrowly tuned as receptor cells indicates that specific channels for some food-odor components (e.g., taurine and glycine) are conserved even at higher neuronal levels. These narrow-spectrum interneurons may have a special function in quality coding either by dominating the interneuronal across-fiber pattern for that stimulus or by being processed independently of the broad-spectrum interneurons and thereby transferring information about certain components by way of specific channels to even higher neuronal levels.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3