Model of electroretinogram b-wave generation: a test of the K+ hypothesis

Author:

Newman E. A.,Odette L. L.

Abstract

Generation of the electroretinogram b-wave is simulated with a computer model representing a dark-adapted amphibian retina. The simulation tests the K+ hypothesis of b-wave generation, which holds that b-wave currents arise from localized Muller cell depolarizations generated by light-evoked increases in extracellular K+ concentration, [K+]o. The model incorporates the following components and processes quantitatively: 1) two time-dependent K+ sources representing the light-evoked [K+]o increases in the inner and outer plexiform layers, 2) a time- and [K+]o-dependent K+ sink representing the [K+]o decrease in the rod inner segment layer, 3) diffusion of released K+ through extracellular space, 4) active K+ reuptake and passive K+ drift across the Muller cell membrane, 5) spatial variations in the tortuosity factor and the volume fraction of extracellular space, 6) an extraretinal shunt resistance. Muller cells are modeled with 1) cytoplasmic resistance, 2) spatial variations in membrane permeability to K+, and 3) a membrane potential specified by the Nernst equation and transmembrane current flow. For specified K+ source and sink densities, the model computes [K+]o variations in time and retinal depth. Based on these [K+]o distributions, Muller cell potentials, current source-density profiles, and intraretinal and transretinal voltages are calculated. Imposed [K+]o distributions similar to those seen experimentally during the b-wave lead to the generation of a transient b-wave response and to a prolonged Muller response in the model system. These response time courses arise because the b-wave is dominated by the short-lived distal [K+]o increase, while the Muller response primarily reflects the long-lived proximal [K+]o increase. Current source-density distributions and intraretinal voltage profiles that are generated by the model at the peak of the b-wave closely resemble experimental results. The model generates a realistic slow PIII potential in response to prolonged [K+]o decreases in the distal retina and reproduces the K+ ejection results of Yanagida and Tomita (50) accurately. Simulations also suggest that tissue damage caused by K+-selective micropipettes in experimental preparations can lead to an underestimation of the distal [K+]o increase. The simulations demonstrate that the spatiotemporal properties of intraretinal b-wave voltages and currents and Muller cell responses can be generated according to the K+ hypothesis: by passive Muller cell depolarization driven by variations in [K+]o.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 196 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3