Linear integration of convergent visual inputs in an oculomotor reflex pathway

Author:

Glantz R. M.,Nudelman H. B.,Waldrop B.

Abstract

The functional connectivity between identified visual interneurons [sustaining fibers (SF)] and oculomotor neurons was assessed by simultaneous recording and cross-correlation analysis. A small group of SFs exhibit excitatory functional connections to an identified tonic oculomotor neuron. The excitatory interactions are found exclusively between SFs and oculomotor neurons with similar and/or overlapping excitatory receptive fields. A second group of SFs exhibit inhibitory connections to motor neurons. The excitatory receptive fields of these SFs correspond to the inhibitory receptive fields of the motor neurons. The collective action of the SFs is sufficient to produce all of the steady-state visual behavior of the motor neurons including the increment in firing rate elicited by illumination, unique features of the motor neuron receptive field, and differential sensitivity to blue light and polarized light. Pairs of SFs that converge on the same motor neuron sum their effects linearly. Thus the joint interaction of two SFs on a motor neuron is equal to the sum of the two postsynaptic effects taken separately. Coactivation of excitatory and inhibitory SF inputs to a motor neuron results in a partial cancellation of their postsynaptic effects on the motor neuron's firing rate. The antagonistic interactions protect the system from perturbations by stray light, visual adaptation, and variations in the central excited state. The ensemble information code, at the SF level of the optomotor pathway, is a set of differentially weighted mean firing rates. The weightings reflect differences in the strengths of the several SF-to- motor neuron interactions. One consequence of these differences is a selective weighting of the effects of illumination (in different regions of visual space) on the compensatory eye reflex.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3