Morphological correlates of physiologically identified Y-, X-, and W-cells in cat retina

Author:

Fukuda Y.,Hsiao C. F.,Watanabe M.,Ito H.

Abstract

The action spike activities of single ganglion cells were recorded from the nasal retina of the intact eye of anesthetized and immobilized cats. Each ganglion cell was identified as a Y-, X-, or W-cell on the basis of its axonal conduction velocity, its receptive-field properties, and the level of maintained activity. Of about 100 ganglion cells physiologically identified and penetrated with horseradish peroxidase (HRP)-containing glass microelectrodes, 21 cells were subsequently identified in flat-mount preparations of the retinas and processed for detection of HRP. Of a total of nine Y-cells recovered, four had been penetrated at the soma and five at the axon. All had the morphology of the alpha-cell of Boycott and Wassle. Eight X-cells recovered. All had been penetrated at the soma and showed beta-cell morphology. Four W-cells were penetrated at the soma and recovered. Two off-tonic W-cells had small somas (15-16 micron in diam) and sparse dendritic fields, resembling gamma-cells of Boycott and Wassle. They are also similar to “G4” and “G18” of Kolb et al.'s classification. One on-tonic W-cell had somewhat larger soma (18 micron) with a relatively densely branched dendritic field. This corresponds to delta-cell of Boycott and Wassle or to “G15” of Kolb et al. One on-off phasic W-cell had a medium-sized soma (25.3 micron) with a fanlike dendritic expansion characteristic of the “unilateral horizontal broad range cell” of Shkolnik-Yarros or of “G22” of Kolb et al. Alternatively, all these W-cells can be called medium-sized gamma-cells. Among all three classes of ganglion cells, a positive correlation was found between the diameter of the receptive-field center and the dendritic field. Assuming that in the cat retina 1 degree of visual angle = 230 micron, dendritic fields of Y-cells seemed larger than their physiologically determined receptive-field centers. By contrast, the reverse relation was found between these two dimensions in X-cells. Axon diameters ranged from 4.0 to 5.6 micron (mean, 4.5 micron) in Y-cells and from 1.9 to 2.7 micron (mean, 2.2 micron) in X-cells. Three W-cells showed axon diameters of 0.6, 1.1, and 1.8 micron. The axon diameter distributions made from axons labeled by massive injections of HRP into the optic nerve fiber layer showed a pattern of distribution similar to that obtained from physiologically identified Y-, X-, and W-cell axons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conducting Channels in the Visual System. The Third Channel;Neuroscience and Behavioral Physiology;2022-07

2. Проводящие каналы зрительной системы. Третий канал;Журнал высшей нервной деятельности им И П Павлова;2021

3. Flexible Neural Hardware Supports Dynamic Computations in Retina;Trends in Neurosciences;2018-04

4. Metabolic Vulnerability in the Neurodegenerative Disease Glaucoma;Frontiers in Neuroscience;2017-03-30

5. An evolving view of retinogeniculate transmission;Visual Neuroscience;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3