Extracellular potassium concentration in chronic alumina cream foci of cats

Author:

Heinemann U.,Dietzel I.

Abstract

Changes in extracellular K+ concentration [( K+]o) were measured with ion-selective microelectrodes in chronic epileptic foci induced by topical application of A1(OH)3 cream on the sensorimotor cortex of cats. The foci were morphologically characterized by a scar surrounded by an area of marked gliosis. Base-line levels of [K+]o in gliotic tissue and its immediate border zone were comparable to those in normal cortical tissue. Peak levels of [K+]o obtained during repetitive electrical stimulation of the cortical surface and thalamic ventrobasal complex were only slightly enhanced with 11.6 mM in chronic foci and 10.8 mM in normal cortex. Iontophoretic K+ application into gliotic tissue was accompanied by slow negative potential shifts comparable to those observed in normal cortex. Passage of constant current through gliotic tissue caused local [K+]o changes in the vicinity of the current-passing electrode. Since these [K+]o changes were similar to those observed in normal tissue, it was concluded that the amount of transcellularly transported K ions was comparable in both tissues. Changes in the size of extracellular space (ES) were investigated by measuring local concentration changes of iontophoretically injected tetramethylammonium and choline ions. During stimulus-induced seizure activity, the ES shrank outside the gliotic area at sites of maximal [K+]o elevation, while it increased at sites within the gliotic tissue where [K+]o rises were smaller. The results suggest that the spatial buffer capacity of gliotic tissue for K+ is not severely impaired. Since the relationship between rises in [K+]o and subsequent undershoots at sites immediately bordering the gliotic tissue is comparable to that in normal cortex, the ability of this epileptic tissue for active K+ uptake appears to be unaffected. This conclusion is further supported by the observation that iontophoretically induced rises in [K+]o during undershoots are reduced to a similar extent as in normal cortex.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3