Phasic and tonic modulation of impulse rates in gamma-motoneurons during locomotion in premammillary cats

Author:

Murphy P. R.,Stein R. B.,Taylor J.

Abstract

To determine the role of gamma-motoneurons in the control of locomotion, we isolated single units from nerves to triceps surae muscles in the premammillary cat. The limb used for recording was largely denervated, except for the muscles of interest, and fixed in place, while the other three limbs walked on a treadmill. One type of gamma-motoneuron (13 units) had a high impulse rate at rest, which changed little on average during walking, but was deeply modulated with each step (phasically modulated gamma-motoneuron or gamma p). Another type (19 units) had a low impulse rate at rest, which increased greatly on average during walking, but was not highly modulated with each step (tonically modulated gamma-motoneuron or gamma t). Peak gamma p rates generally occurred after peak EMG, often near the peak of tension. In contrast, peak gamma t activity generally preceded peak electromyograms (EMG). No significant difference was observed in conduction velocities for the two types of units. At rest all gamma t units were excited by natural stimulation of the fur over a large part of the body surface, whereas 3 of 11 gamma p units were inhibited. During locomotion the same natural stimuli had no observable effect on either type of unit. By recording in continuity from fine branches of the lateral and medial gastrocnemius nerves and stimulating ventral root filaments in continuity, we identified dynamic and static gamma-motoneurons in terms of their effects on muscle spindle afferents. After cutting the nerve branch distally and other ventral root filaments supplying the muscle, the resting discharge of dynamic and static gamma-motoneurons was recorded and found to correspond to that of the gamma p and gamma t units, respectively. Other evidence is presented for a correspondence between phasically and tonically modulated units and dynamic and static gamma-motoneurons, contrary to some suggestions in the literature.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3