Affiliation:
1. Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
Abstract
The phenomena of substitution and rotation among motor units of a muscle were examined in seven different muscles. Intramuscular motor unit activity and surface electromyographic (EMG) activity were recorded from one of the following muscles: abductor digiti minimi, first dorsal interosseous, extensor digitorum communis, flexor and extensor carpi radialis, tibialis anterior, and soleus. The subject was asked to discharge a discernible unit at a comfortable constant or rhythmically (pseudosinusoidally) modulated rate with audio and visual feedback. Results are reported from a total of 42 sets of motor units from all seven muscles. We observed that when a subject fired a motor unit for a long period, an additional motor unit frequently started to discharge after a few minutes. When the subject was asked to keep activity down to one unit, very often it was Unit 1 that dropped and Unit 2 continued to fire. Whereas Unit 2 had fired for a few minutes, Unit 1 resumed firing without any conscious effort by the subject. If the subject was then asked to retain just one unit, it was Unit 2 that dropped. Rhythmic modulation of firing rate of a tonically firing unit showed that whereas the threshold of this unit increased, the threshold of a phasically discharging unit decreased substantially. The increase in threshold of a tonically discharging unit is suggested to arise from inactivation of Na+and Ca2+channels and the decrease in threshold of higher-threshold units is suggested to arise from an increase in persistent inward currents that may occur during prolonged contractions. Whether a unit stops or starts to fire is suggested to depend on a balance between the strength of the central motor command, persistent inward currents, and inactivation of voltage-gated channels. Such rotations among low-threshold motoneurons would ensure low-level sustained contractions to be viable not only in small hand muscles but also in larger limb muscles.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献