Case Studies in Neuroscience: A dissociation of balance and posture demonstrated by camptocormia

Author:

St George R. J.1ORCID,Gurfinkel V. S.2,Kraakevik J.2,Nutt J. G.2,Horak F. B.23

Affiliation:

1. Sensorimotor Neuroscience and Ageing, School of Medicine, University of Tasmania, Australia

2. Department of Neurology, Oregon Health & Science University, Portland, Oregon

3. VA Health Care System, Portland, Oregon

Abstract

Upright stance in humans requires an intricate exchange between the neural mechanisms that control balance and those that control posture; however, the distinction between these control systems is hard to discern in healthy subjects. By studying balance and postural control of a participant with camptocormia — an involuntary flexion of the trunk during standing that resolves when supine — a divergence between balance and postural control was revealed. A kinematic and kinetic investigation of standing and walking showed a stereotyped flexion of the upper body by almost 80° over a few minutes, and yet the participant’s ability to control center of mass within the base of support and to compensate for external perturbations remained intact. This unique case also revealed the involvement of automatic, tonic control of the paraspinal muscles during standing and the effects of attention. Although strength was reduced and MRI showed a reduction in muscle mass, there was sufficient strength to maintain an upright posture under voluntary control and when using geste antagoniste maneuvers or “sensory tricks” from visual, auditory, and haptic biofeedback. Dual tasks that either increased or decreased the attention given to postural alignment would decrease or increase the postural flexion, respectively. The custom-made “twister” device that measured axial resistance to slow passive rotation revealed abnormalities in axial muscle tone distribution during standing. The results suggest that the disorder in this case was due to a disruption in the automatic, tonic drive to the postural muscles and that myogenic changes were secondary. NEW & NOTEWORTHY By studying an idiopathic camptocormia case with a detailed biomechanical and sensorimotor approach, we have demonstrated unique insights into the neural control of human bipedalism 1) balance and postural control cannot be considered the same neural process, as there is a stereotyped abnormal flexed posture, without balance deficits, associated with camptocormia, and 2) posture during standing is controlled by automatic axial tone but “sensory tricks” involving sensory biofeedback to direct voluntary attention to postural alignment can override, when required.

Funder

Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)

HHS | National Institutes of Health (NIH)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3