Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1

Author:

Mikami A.,Newsome W. T.,Wurtz R. H.

Abstract

We measured the spatial and temporal limits of directional interactions for 105 directionally selective middle temporal (MT) neurons and 26 directionally selective striate (V1) neurons. Directional interactions were measured using sequentially flashed stimuli in which the spatial and temporal intervals between stimuli were systematically varied over a broad range. A direction index was employed to determine the strength of directional interactions for each combination of spatial and temporal intervals tested. The maximum spatial interval for which directional interactions occurred in a particular neuron was positively correlated with receptive-field size and with retinal eccentricity in both MT and V1. The maximum spatial interval was, on average, three times as large in MT as in V1. The maximum temporal interval for which we obtained directional interactions was similar in MT and V1 and did not vary with receptive-field size or eccentricity. The maximum spatial interval for directional interactions as measured with flashed stimuli was positively correlated with the maximum speed of smooth motion that yielded directional responses. MT neurons were directionally selective for higher speeds than were V1 neurons. These observations indicate that the large receptive fields found in MT permit directional interactions over longer distances than do the more limited receptive fields of V1 neurons. A functional advantage is thereby conferred on MT neurons because they detect directional differences for higher speeds than do V1 neurons. Recent psychophysical studies have measured the spatial and temporal limits for the perception of apparent motion in sequentially flashed visual displays. A comparison of the psychophysical results with our physiological data indicates that the spatiotemporal limits for perception are similar to the limits for direction selectivity in MT neurons but differ markedly from those for V1 neurons. These observations suggest a correspondence between neuronal responses in MT and the short-range process of apparent motion.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 260 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3