Patterned response to odor in mammalian olfactory bulb: the influence of intensity

Author:

Meredith M.

Abstract

Responses of single neurons in the olfactory bulb of anesthetized hamsters were recorded extracellularly while odors of defined concentration and time course were delivered to the olfactory system at constant flow. Responses could be either excitatory or suppressive, as judged by the first distinguishable change in firing rate during odor delivery. However, when the time course of the response was examined in more detail, approximately one-third of all tests and one-half of the tests at high concentration resulted in complex temporal patterns of firing rate that involved both increases and decreases with respect to spontaneous activity. Approximately two-thirds of all tests produced responses where increased firing rate preceded any distinguishable suppression. Excitatory and suppressive responses were each classified into four groups according to their temporal patterns. Different patterns were not equally represented in the data and the proportions of patterns elicited by the same odor changed with stimulus intensity. Complex responses, where temporal patterns included periods of firing rate above and below spontaneous rate, were increasingly common and intensity was increased. Magnitude of response is difficult to define when a single response includes both increases and decreases of firing rate but more than half of the neurons that responded to more than one stimulus concentration clearly had nonmonotonic intensity-response functions. Forty-one out of 101 neurons were classified as output cells because they could be driven at short constant latency by lateral olfactory tract stimulation. Their responses were not clearly different from the remaining cells that could not be classified as output cells. The contribution of the inhibitory circuits of the olfactory bulb to the generation of patterned response and to changes in pattern with intensity are discussed. The lateral inhibitory circuits of the bulb appear to be sufficient to explain the data presented here.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 158 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3