Gradation of isometric tension by different activation rates in motor units of cat flexor carpi radialis muscle

Author:

Botterman B. R.,Iwamoto G. A.,Gonyea W. J.

Abstract

Single motor units of the flexor carpi radialis (FCR) muscle were activated with a series of constant-rate stimulus trains to study the relation between the frequency of activation and isometric tension development (F-T relation). The tension produced by each stimulus train was expressed as a percentage of the maximum tension-time area (Amax) found for a given unit. Between 25 and 75% Amax a clear separation was seen in the rates needed to produce the same relative tension for the F-T curves of slow-twitch (type S) and fast-twitch (type F) units. Over the steepest portion of the F-T curve (25-50% Amax), where tension output was most sensitive to changes in activation rate, type F units required substantially higher stimulation rates (30 pps) to achieve the same relative tension output as type S units. Furthermore, the frequency range that corresponded to the steep portion of the curve was 2.3 times greater for type F units. For both type S and F units, twitch duration was deemed to be an important determinant of the F-T curve, as has been shown previously. A direct continuous relation was seen between the integrated twitch time (ITT) and the stimulus interval needed to produce 50% Amax (r = 0.94, P less than 0.001). Thus, units that had relatively brief twitches required higher activation rates to achieve the same relative percentage of Amax. Comparison of F-T curves from FCR with those derived by other investigators for cat hindlimb units (medial gastrocnemius and peroneus longus) revealed that significant differences in activation rates were needed to produce the same percentage of Amax throughout the midrange of the F-T curve. At 50% Amax, type F units in FCR required activation rates approximately 20 pps higher than type F units in the hindlimb. Type S units in FCR required only slightly higher rates (approximately equal to 5 pps). Based on a number of well-founded assumptions, F-T curves derived from FCR units were used to estimate the potential contribution of rate coding to total muscle tension by type S and F units. This analysis leads to the conclusion that rate modulation is a potentially important factor in the gradation of tension for the FCR muscle.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3