Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill

Author:

Drew T.,Dubuc R.,Rossignol S.

Abstract

Recordings were made from single units in the medullary reticular formation (MRF) between AP-4.2 and AP-12.9 and from the midline to 3.7 mm lateral in chronically prepared, unrestrained cats walking on a treadmill. Recordings were made with rigid microelectrodes held in a microdrive, and reticulospinal neurons were identified by antidromic stimulation of their axons through microwires chronically implanted into the spinal cord at the L2 level. Electromyograms (EMGs) were recorded from flexor and extensor muscles of the fore- and hindlimbs as well as from back and neck muscles. In total, 295 cells were recorded from 40 penetrations in 4 cats; 252 of these cells were recorded from the more medial regions of the reticular formation encompassing the gigantocellular, magnocellular, and lateral tegmental fields; 38.5% of these (97/252) were antidromically identified from the spinal cord. The remaining 43 neurons (43/295) were recorded from a more lateral and ventral position. These medial and ventrolateral groups of neurons differed not only in position but also in aspects of their discharge during locomotion. Rank-ordered raster displays, triggered from the onset of each recorded muscle, were used to correlate neuronal and muscular activity. The discharge rate of 31% of the reticulospinal neurons (30/97) was modulated once or twice in each step cycle and was strictly related to one or more of the recorded EMGs (EMG-related neurons) on the basis of the pattern of discharge. The discharge of 33/97 (34%) of the neurons was modulated at the periodicity of the locomotor rhythm but could not be correlated with any of the recorded EMGs (locomotor-related cells), whereas the remaining 34/97 neurons (35%) were either silent, fired tonically, or were not related to the locomotor pattern (unrelated cells). Of the EMG-related neurons 27% were related to flexor muscles and the remaining 63% to extensor muscle activity. The discharge pattern of all except two of the flexor-related neurons was correlated with hindlimb muscle activity, whereas that of the extensor-related neurons was correlated almost equally with fore- and hindlimb muscles. Correlations were found with muscles lying both ipsilaterally and contralaterally to the site of the recordings. Although the locomotor-related neurons showed no preferential relation with any of the recorded EMGs, a comparison of the depth of modulation of their discharge measured from postevent histograms suggested that more of these cells were related to the forelimb than to the hindlimb.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 194 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3