Central input to primary afferent neurons in crayfish, Pacifastacus leniusculus, is correlated with rhythmic motor output of thoracic ganglia

Author:

Sillar K. T.,Skorupski P.

Abstract

A preparation is described in which the thoracic ganglia of the crayfish are isolated together with the thoracocoxal muscle receptor organ (TCMRO) of the fourth leg. This preparation allows intracellular analysis of both centrally generated and reflex activity in leg motor neurons (MNs). The isolated thoracic ganglia can spontaneously generate a rhythmic motor pattern resembling that used during forward walking (Fig. 4). This involves the reciprocal activity of promotor and remotor MNs, with levator MNs firing in phase with promotor bursts. Stretch of the TCMRO in quiescent preparations evokes a resistance reflex in promotor MNs (Fig. 6). In more active preparations the response is variable and often becomes an assistance reflex, with excitation of remotor MNs on stretch (Fig. 7). When rhythmic motor patterns occur, the neuropilar processes of the S and T fibers receive central inputs that are strongly correlated with the oscillatory drive to the MNs and probably have the same origin (Figs. 8 and 9). Central inputs to the S and T fibers occur in opposite phases within a cycle of rhythmic motor output. The S fiber is depolarized in phase with promotor MNs and the T fiber in phase with remotor activity. The input to the T fiber is shown to be a chemical synaptic drive that has a reversal potential approximately 14 mV more depolarized than the fiber's resting membrane potential. This input substantially modulates the amplitude and waveform of passively propagated receptor potentials generated by TCMRO stretch (Fig. 11). It is argued that the central inputs to the TCMRO afferents will modulate proprioceptive feedback resulting from voluntary movements.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3