Gait synergetic neuromuscular control in children with cerebral palsy at different gross motor function classification system levels

Author:

Yu Yi1,Chen Xiang1,Cao Shuai1,Wu De2,Zhang Xu1,Chen Xun1

Affiliation:

1. Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China

2. Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China

Abstract

Cerebral palsy (CP) is a neural developmental disease featured with gait abnormalities. CP gait assessment is usually performed with the Gross Motor Function Classification System (GMFCS) in clinics, which does not involve a thorough assessment of neuromuscular control. To understand how the neuromuscular control disorders lead to gait abnormalities, we explored the relationship between GMFCS levels and the gait synergetic control characteristics in this study. In total, 18 children with CP at different GMFCS levels (mean age: 4.41±1.30 yr) and 8 age-matched typically developing (TD) children (mean age: 4.43±1.36 yr) were recruited to perform a straight walking task, and the surface electromyographic (sEMG) signals from eight lower limb muscles on each side and accelerometer data were collected. A nonnegative matrix factorization method was applied to obtain the muscle synergies from the sEMG signals. Next, synergy structures were projected onto the basic gait synergies to test the completeness of those structures. Subsequently, synergy activation parameters, including total activation duration and coactivation index, were compared across the participants. This study showed that children with CP at GMFCS levels I and II and the TD children had similar synergy structures, but the synergy activations of these children with CP were different from those of TD children. In addition, similar to previous research, we also found that children with CP at GMFCS level III could not access all four basic synergies on both sides. Based on the synergy analysis results, a gait assessment paradigm was proposed to facilitate the clinical CP gait evaluation. NEW & NOTEWORTHY Understanding the mechanism of gait abnormality has important clinical significance for the diagnosis, prognosis, and possible treatment of motor dysfunction in children with cerebral palsy (CP). In this study, the comparisons of the lower limb muscle synergies among different groups of children with CP at different Gross Motor Function Classification System levels might provide some new insight into the mechanism underlying the gait disorder. In particular, the discrepancies of gait synergy structure and activation patterns across the study groups may indicate different neurophysiological and pathological attributes in different groups of patients.

Funder

National Natural Science Foundation of China (NSFC)

National Key Research and Development Program of China

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3