Effect of barium on potassium diffusion across the proximal convoluted tubule of the anesthetized rat

Author:

Kibble J. D.1,Wareing M.1,Wilson R. W.1,Green R.1

Affiliation:

1. Division of Physiology, Pharmacology, School of Biological Sciences, University of Manchester, United Kingdom.

Abstract

The role of diffusion in transepithelial potassium flux and the importance of potassium channels in the luminal cell membrane to this process were examined by applying a luminal microperfusion technique to surface tubules in kidneys of anesthetized rats. Potassium concentration gradients were applied by altering the concentration of KCl in perfusates. To some perfusates, 2 mmol/l BaCl2 was added to block potassium channels in the luminal cell membrane. The mean applied potassium concentration gradient was highly predictive of net potassium transport in the absence of any change in fluid reabsorption, with an apparent potassium permeability of 22 x 10(-5) cm/s. Thus potassium transport in the proximal tubule may have an important diffusive component. Luminal barium significantly reduced the concentration of potassium in collected fluid under conditions of net potassium secretion, although a substantial barium-insensitive potassium permeability was also observed. However, the site of action of luminally applied barium is uncertain in proximal tubule, since barium was reabsorbed by the tubule at a rate of 13.6 pmol.mm-1.min-1. We conclude that diffusion is a significant driving force for potassium reabsorption in proximal tubule and that most diffusive potassium transport occurs via a barium-insensitive route, possibly the paracellular pathway.

Publisher

American Physiological Society

Subject

Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Potassium Disorders: Evaluation and Management;Pediatric Nephrology;2021

2. Potassium regulation in the neonate;Pediatric Nephrology;2017-04-04

3. Acid-Base and Potassium Homeostasis;Seminars in Nephrology;2013-05

4. Regulation of Potassium Excretion;Seldin and Giebisch's The Kidney;2008

5. Potassium transport in the maturing kidney;Pediatric Nephrology;2007-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3