Function and structure of H-K-ATPase in the kidney

Author:

Wingo C. S.,Smolka A. J.

Abstract

The present review summarizes recent functional and structural evidence indicating that the kidney possesses at least one and probably more than one isoform of a proton- and potassium-activated adenosinetriphosphatase (H-K-ATPase). Functional studies have examined in detail the mechanism of luminal acidification and K/Rb absorption by the outer medullary collecting duct (OMCD) from the inner stripe, a high-capacity distal site of urinary acidification. These studies indicate that the mechanism of proton secretion in this segment is similar to a model proposed for gastric acid secretion. Specifically, the profound effect of H-K-ATPase inhibitors or luminal K removal on net bicarbonate (HCO3) absorption indicates a major role for an H-K pump in luminal acidification by the OMCD. The importance of an H-K-ATPase is further supported by the finding that nanomolar concentrations of bafilomycin A1, which specifically inhibit vacuolar-type H-ATPase, have significantly smaller effects on net HCO3 absorption than do H-K-ATPase inhibitors. Studies on the perfused inner medullary collecting duct (IMCD) and cultured IMCD cells also suggest a significant role for H-K-ATPase in luminal acidification by the IMCD. Evidence has accrued from studies in the cortical CD and OMCD that the mechanism of H-K-ATPase-mediated luminal proton secretion differs under K-replete and K-restricted conditions. In K repletion, luminal K ions transported by the pump recycle back into the lumen by a Ba-sensitive mechanism. However, in K restriction, the mechanism of the H-K-ATPase involves luminal proton secretion and K absorption that is insensitive to luminal Ba and, by inference, apical K recycling. Moreover, in K restriction, K/Rb absorption is inhibited by basolateral Ba, indicating that the pump operates to reabsorb K/Rb across the epithelium. The structural evidence reviewed here indicates the presence of mRNA within the mammalian kidney that is either identical or highly homologous to mRNAs for gastric and putative colonic H-K-ATPase alpha-subunits and gastric H-K-ATPase beta-subunit. Localization of these transcripts by in situ hybridization demonstrates gastric alpha- and beta-subunit mRNAs in intercalated cells of both the cortical and medullary CD, principal cells of the CD, and IMCD cells. Additional studies in transgenic mice indicate that regulatory sequences upstream to the H-K-ATPase beta-subunit gene direct transcription in both gastric parietal cells and the renal CD.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Ionophores on Activity of Na+,Cl–(HCO 3 − )-ATPase;Bulletin of Experimental Biology and Medicine;2016-10

2. Parameter estimation for mathematical models of a nongastric H+(Na+)-K+(NH4+)-ATPase;American Journal of Physiology-Renal Physiology;2015-09-01

3. An Integrated View of Potassium Homeostasis;New England Journal of Medicine;2015-07-02

4. Les acidoses tubulaires rénales;La Revue de Médecine Interne;2014-01

5. Pseudohypoaldosteronism Type 1;Journal of Genetic Medicine;2013-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3