Oxytocin as an antidiuretic hormone. I. Concentration dependence of action

Author:

Chou C. L.1,DiGiovanni S. R.1,Mejia R.1,Nielsen S.1,Knepper M. A.1

Affiliation:

1. Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lungand Blood Institute, National Institutes of Health, Bethesda, Maryland20892, USA.

Abstract

Circulating concentrations of oxytocin increase to 10-40 pM in rats in response to osmotic stimuli, suggesting that oxytocin could play a role in regulation of water balance. The present studies tested whether oxytocin at such concentrations increases osmotic water permeability (Pf) in isolated perfused terminal inner medullary collecting ducts (IMCD). In IMCD segments from Sprague-Dawley rats, 20 pM oxytocin added to the peritubular bath caused a two- to threefold increase in Pf, whereas 200 pM oxytocin increased Pf by five- to sixfold (n = 8, P < 0.01). IMCD from Brattleboro rats, which manifest central diabetes insipidus, exhibited a 2.8-fold increase in Pf in response to 20 pM oxytocin and a 4.7-fold increase in response to 200 pM oxytocin. However, in Brattleboro rats, the response to 20 pM oxytocin was dependent on prior water restriction of the rats. Immunoblotting showed no change in the expression of the aquaporin-CD water channel in Brattleboro rats in response to water restriction. Nevertheless, immunofluorescence studies of inner medullary tissue from Brattleboro rats revealed a marked redistribution of the aquaporin-CD water channels to a predominantly apical and subapical localization in IMCD cells in response to water restriction, similar to the redistribution seen in response to vasopressin. Mathematical modeling studies revealed that the measured increase in Pf in response to oxytocin is sufficient to generate a concentrated urine. We conclude that oxytocin can function physiologically as an antidiuretic hormone, mimicking the short-term action of vasopressin on water permeability, albeit with somewhat lower potency.

Publisher

American Physiological Society

Subject

Physiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pathophysiology of Drug-Induced Hyponatremia;Journal of Clinical Medicine;2022-09-30

2. The Role of Vasopressin V2 Receptor in Drug-Induced Hyponatremia;Frontiers in Physiology;2021-12-10

3. Animal Models of Central Diabetes Insipidus: Oxytocin and Low-Sodium Diets as Complementary Treatments;Experimental Animal Models of Human Diseases - An Effective Therapeutic Strategy;2018-05-23

4. Internalization of G-protein-coupled receptors: Implication in receptor function, physiology and diseases;Best Practice & Research Clinical Endocrinology & Metabolism;2018-04

5. Oral Contraceptives and Renal Water Handling;Physiological Reports;2017-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3