Depletion of intercalated cells from collecting ducts of carbonic anhydrase II-deficient (CAR2 null) mice

Author:

Breton S.1,Alper S. L.1,Gluck S. L.1,Sly W. S.1,Barker J. E.1,Brown D.1

Affiliation:

1. Renal Unit, Massachusetts General Hospital, Boston, USA.

Abstract

The kidneys of mice (CAR2-null mice) that are genetically devoid of carbonic anhydrase type II (CAII) were screened by immunocytochemistry with antibodies that distinguish intercalated and principal cells. Immunofluorescent localization of the anion exchanger AE1 and of the 56-kDa subunit of the vacuolar H(+)-adenosinetriphosphatase (H(+)-ATPase) was used to identify intercalated cells, while the AQP2 water channel was used as a specific marker for principal cells of the collecting duct. The CAII deficiency of the CAR2-null mice was first confirmed by the absence of immunofluorescent staining of kidney sections exposed to an anti-CAII antibody. Cells positive for AE1 and H(+)-ATPase were common in all collecting duct regions in normal mice but were virtually absent from the inner stripe of the outer medulla and the inner medulla of CAR2-null mice. The number of positive cells was also reduced threefold in the cortical collecting duct of CAR2-null animals compared with normal mice. In parallel, the percentage of AQP2-positive cells was correspondingly increased in the collecting tubules of CAII-deficient mice, whereas the total number of cells per tubule remained unchanged. These results suggest that intercalated cells are severely depleted and are replaced by principal cells in CAII-deficient mice. Quantitative analysis and double staining showed that, in the cortex, both type A and type B intercalated cells are equally affected. Elucidation of the mechanism(s) responsible for this phenotype will be of importance in understanding the origin and development of intercalated cells in the kidney.

Publisher

American Physiological Society

Subject

Physiology

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3