Increased Tyr phosphorylation of ZO-1 during modification of tight junctions between glomerular foot processes

Author:

Kurihara H.1,Anderson J. M.1,Farquhar M. G.1

Affiliation:

1. Division of Cellular and Molecular Medicine, University of California,San Diego 92093.

Abstract

The slit diaphragms between the glomerular epithelial foot processes represent a variant of the tight junction that are rapidly replaced by typical tight junctions after perfusion with protamine sulfate (PS). To investigate the mechanism of signaling involved, tyrosine phosphorylation of glomerular proteins was analyzed in newborn, PS-treated, and control rats using antiphosphotyrosine immunoglobulin G. In glomeruli of normal adults, phosphotyrosine (Ptyr) staining was confined largely to mesangial cells by immunofluorescence, whereas in newborn and PS-treated rats, the Ptyr signal was dramatically increased in the glomerular epithelium. By immunogold labeling, it was found that newly phosphorylated proteins were concentrated along the newly formed tight junctions (cell-cell junctions) and the basal membrane of the foot processes (cell-matrix junctions). By immunoblotting, several prominent bands were detected with anti-Ptyr in glomerular lysates of controls; in PS-treated rats, additional bands were detected at 225, 180, and 100 kDa. The 225-kDa protein was identified as ZO-1 by immunoprecipitation with anti-ZO-1 followed by immunoblotting with anti-Ptyr. These findings indicate that ZO-1 is one of the targets for tyrosine phosphorylation after PS treatment. They indicate that phosphorylation of tight junction and other proteins occurs during the formation of tight junctions in glomeruli under circumstances where there are rapid changes in epithelial cell shape.

Publisher

American Physiological Society

Subject

Physiology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3