Beta-adrenergic receptor function in rat proximal tubule epithelial cells in culture

Author:

Hanson A. S.1,Linas S. L.1

Affiliation:

1. Department of Medicine, Denver General Hospital, Colorado, USA.

Abstract

The adrenergic system is important in regulating proximal tubule sodium reabsorption. Although alpha-adrenergic receptors have been identified in proximal tubules, the presence and function of beta-adrenergic receptors (BAR) in proximal tubules is less certain. The purpose of our study was to determine whether functional BAR are present on apical or basolateral surfaces of proximal tubule epithelial cells (PTEC) of rat kidney. We specifically focused on BAR coupling to adenylate cyclase and on differences between requirements for apical and basolateral receptor coupling to adenylate cyclase. To determine BAR expression and function, primary cultures of rat PTECs were grown on permeable supports. Scatchard analysis of 125I-labeled cyanopindolol binding revealed a single class of receptors on both apical and basolateral surfaces. Apical isoproterenol (ISO) resulted in time- and concentration-dependent increases in adenosine 3',5'-cyclic monophosphate (cAMP) that were 50% of responses after basolateral ISO. Apical BAR-cAMP coupling was mediated by B1-adrenergic receptors (B1AR), since apical cAMP responses were abrogated with apical (but not basolateral) B1 but not B2 antagonists. Apical B1AR required endocytosis prior to adenylate cyclase activation, since increases in cAMP were prevented by phenylarsine oxide or colchicine. B1AR-adenylate cyclase coupling was independent of intra- or extracellular calcium, cyclooxygenase metabolites, and protein kinase C (PKC) and dependent on Gs guanine nucleotide regulatory protein. Prolonged exposure to ISO resulted in time- and concentration-dependent homologous desensitization of cAMP responses. Desensitization was independent of receptor sequestration, PKA, or PKC. We conclude the following: B1AR are present on both apical and basolateral surfaces of rat PTECs.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3