Assessment of impaired vascular reactivity in a rat model of diabetic nephropathy: effect of nitric oxide synthesis inhibition on intrarenal diffusion and oxygenation measured by magnetic resonance imaging

Author:

Hueper Katja12,Hartung Dagmar12,Gutberlet Marcel12,Gueler Faikah3,Sann Holger4,Husen Bettina5,Wacker Frank12,Reiche Dania5

Affiliation:

1. Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany;

2. REBIRTH Hannover, Hannover, Germany

3. Clinic for Nephrology, Hannover Medical School, Hannover, Germany;

4. Abbott Laboratories, Hannover, Germany;

5. Abbott Products, Hannover, Germany; and

Abstract

Diabetes is associated with impaired vascular reactivity and the development of diabetic nephropathy. In a rat model of streptozotocin-induced diabetic nephropathy, the effects of systemic nitric oxide (NO) synthesis inhibition on intrarenal diffusion and oxygenation were determined by noninvasive magnetic resonance diffusion tensor imaging and blood O2 level-dependent (BOLD) imaging, respectively. Eight weeks after the induction of diabetes, 21 rats [ n = 7 rats each in the untreated control group, diabetes mellitus (DM) group, and DM with uninephrectomy (DM UNX) group] were examined by MRI. Diffusion tensor imaging and BOLD sequences were acquired before and after NO synthesis inhibition with N-nitro-l-arginine methyl ester (l-NAME). In the same rats, mean arterial pressure and vascular conductance were determined with and without the influence of l-NAME. In control animals, NO synthesis inhibition was associated with a significant increase of mean arterial pressure of 33.8 ± 4.3 mmHg ( P < 0.001) and a decrease of vascular conductance of −17.8 ± 2.0 μl·min−1·100 mmHg−1 ( P < 0.001). These changes were attenuated in both DM and DM UNX groups with no significant difference between before and after l-NAME measurements in DM UNX animals. Similarly, l-NAME challenge induced a significant reduction of renal transverse relaxation time (T2*) at MRI in control animals, indicating reduced renal oxygenation after l-NAME injection compared with baseline. DM UNX animals did not show a significant T2* reduction after NO synthesis inhibition in the renal cortex and attenuated T2* reduction in the outer medulla. MRI parameters of tissue diffusion were not affected by l-NAME in all groups. In conclusion, BOLD imaging proved valuable to noninvasively measure renal vascular reactivity upon NO synthesis inhibition in control animals and to detect impaired vascular reactivity in animals with diabetic nephropathy.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3