Zebrafishslc4a2/ae2anion exchanger: cDNA cloning, mapping, functional characterization, and localization

Author:

Shmukler Boris E.,Kurschat Christine E.,Ackermann Gabriele E.,Jiang Lianwei,Zhou Yi,Barut Bruce,Stuart-Tilley Alan K.,Zhao Jinhua,Zon Leonard I.,Drummond Iain A.,Vandorpe David H.,Paw Barry H.,Alper Seth L.

Abstract

Although the zebrafish has been used increasingly for the study of pronephric kidney development, studies of renal ion transporters and channels of the zebrafish remain few. We report the cDNA cloning and characterization of the AE2 anion exchanger ortholog from zebrafish kidney, slc4a2/ae2. The ae2 gene in linkage group 2 encodes a polypeptide of 1,228 aa exhibiting 64% aa identity with mouse AE2a. The exon-intron boundaries of the zebrafish ae2 gene are nearly identical to those of the rodent and human genes. Whole-mount in situ hybridization detects ae2 mRNA in prospective midbrain as early as the five-somite stage, then later in the pronephric primordia and the forming pronephric duct, where it persists through 72 h postfertilization (hpf). Zebrafish Ae2 expressed in Xenopus laevis oocytes mediates Na+-independent, electroneutral36Cl/Clexchange moderately sensitive to inhibition by DIDS, is inhibited by acidic intracellular pH and by acidic extracellular pH, but activated by (acidifying) ammonium and by hypertonicity. Zebrafish Ae2 also mediates Cl/HCO3exchange in X. laevis oocytes and accumulates in or near the plasma membrane in transfected HEK-293 cells. In 24–48 hpf zebrafish embryos, the predominant but not exclusive localization of Ae2 polypeptide is the apical membrane of pronephric duct epithelial cells. Thus Ae2 resembles its mammalian orthologs in function, mechanism, and acute regulation but differs in its preferentially apical expression in kidney. These results will inform tests of the role of Ae2 in zebrafish kidney development and function.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3