PKA-dependent ENaC trafficking requires the SNARE-binding protein complexin

Author:

Butterworth M. B.,Frizzell R. A.,Johnson J. P.,Peters K. W.,Edinger R. S.

Abstract

Acute regulation of epithelial sodium channel (ENaC) function at the apical surface of polarized kidney cortical collecting duct (CCD) epithelial cells occurs in large part by changes in channel number, mediated by membrane vesicle trafficking. Several soluble N-ethyl-maleimide-sensitive factor attachment protein receptors (SNARE) have been implicated in this process. A novel SNARE-binding protein, complexin, has been identified in nervous tissue which specifically binds to and stabilizes SNARE complexes at synaptic membranes to promote vesicle fusion. To test whether this protein is present in mouse CCD (mCCD) cells and its possible involvement in acute ENaC regulation, we cloned complexin (isoform II) from a mouse kidney cDNA library. Complexin II mRNA coexpressed with α-, β-, and γ-ENaC subunits in Xenopus laevis oocytes reduced sodium currents to 16 ± 3% ( n = 19) of control values. Short-circuit current ( Isc) measurements on mCCD cell lines stably over- or underexpressing complexin produced similar results. Basal Isc was reduced from 12.0 ± 1.0 ( n = 15) to 2.0 ± 0.4 ( n = 15) and 1.8 ± 0.3 ( n = 17) μA/cm2, respectively. Similarly forskolin-stimulated Isc was reduced from control values of 20.0 ± 2 to 2.7 ± 0.5 and 2.3 ± 0.4 μA/cm2 by either increasing or decreasing complexin expression. Surface biotinylation demonstrated that the complexin-induced reduction in basal Iscwas due to a reduction in apical membrane-resident ENaC and the inhibition in forskolin stimulation was due to the lack of ENaC insertion into the apical membrane to increase surface channel number. Immunofluorescent localization of SNARE proteins in polarized mCCD epithelia detected the presence of syntaxins 1 and 3 and synaptosomal-associated protein of 23 kDa (SNAP-23) at the apical membrane, and vesicle-associated membrane protein (VAMP2) was localized to intracellular compartments. These findings identify SNAREs that may mediate ENaC-containing vesicle insertion in mCCD epithelia and suggest that stabilization of SNARE interactions by complexin is an essential aspect of the regulated trafficking events that increase apical membrane ENaC density either by constitutive or regulated trafficking pathways.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3