Characterization of an amiloride binding region in the α-subunit of ENaC

Author:

Kelly Ollie,Lin Chaomei,Ramkumar Mohan,Saxena Nina C.,Kleyman Thomas R.,Eaton Douglas C.

Abstract

One of the defining characteristics of the epithelial sodium channel (ENaC) is its block by the diuretic amiloride. This study investigates the role of the extracellular loop of the α-subunit of ENaC in amiloride binding and stabilization. Mutations were generated in a region of the extracellular loop, residues 278–283. Deletion of this region, WYRFHY, resulted in a loss of amiloride binding to the channel. Channels formed from wild-type α-subunits or α-subunits containing point mutations in this region were examined and compared at the single-channel level. The open probabilities ( Po) of wild-type channels were distributed into two populations: one with a high Po and one with a low Po. The mean open times of all the mutant channels were shorter than the mean open time of the wild-type (high- Po) channel. Besides mutations Y279A and H282D, which had amiloride binding affinities similar to that of wild-type α-ENaC, all other mutations in this region caused changes in the amiloride binding affinity of the channels compared with the wild-type channel. These data provide new insight into the relative position of the extracellular loop with respect to the pore of ENaC and its role in amiloride binding and channel gating.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3