Extracellular cAMP-adenosine pathways in the mouse kidney

Author:

Jackson Edwin K.1,Ren Jin1,Cheng Dongmei1,Mi Zaichuan1

Affiliation:

1. Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania

Abstract

The renal extracellular 2′,3′-cAMP-adenosine and 3′,5′-cAMP-adenosine pathways (extracellular cAMPs→AMPs→adenosine) may contribute to renal adenosine production. Because mouse kidneys provide opportunities to investigate renal adenosine production in genetically modified kidneys, it is important to determine whether mouse kidneys express these cAMP-adenosine pathways. We administered (renal artery) 2′,3′-cAMP and 3′,5′-cAMP to isolated, perfused mouse kidneys and measured renal venous secretion rates of 2′,3′-cAMP, 3′,5′-cAMP, 2′-AMP, 3′-AMP, 5′-AMP, adenosine, and inosine. Arterial infusions of 2′,3′-cAMP increased ( P < 0.0001) the mean venous secretion of 2′-AMP (390-fold), 3′-AMP (497-fold), adenosine (18-fold), and inosine (adenosine metabolite; 7-fold), but they did not alter 5′-AMP secretion. Infusions of 3′,5′-cAMP did not affect venous secretion of 2′-AMP or 3′-AMP, but they increased ( P < 0.0001) secretion of 5′-AMP (5-fold), adenosine (17-fold), and inosine (6-fold). Energy depletion (metabolic inhibitors) increased the secretion of 2′,3′-cAMP (8-fold, P = 0.0081), 2′-AMP (4-fold, P = 0.0028), 3′-AMP (4-fold, P = 0.0270), 5′-AMP (3-fold, P = 0.0662), adenosine (2-fold, P = 0.0317), and inosine (7-fold, P = 0.0071), but it did not increase 3′,5′-cAMP secretion. The 2′,3′-cAMP-adenosine pathway was quantitatively similar in CD73 −/− vs. +/+ kidneys. However, 3′,5′-cAMP induced a 6.7-fold greater increase in 5′-AMP, an attenuated increase (61% reduction) in inosine and a similar increase in adenosine in CD73 −/− vs. CD73 +/+ kidneys. In mouse kidneys, 1) 2′,3′-cAMP and 3′,5′-cAMP are metabolized to their corresponding AMPs, which are subsequently metabolized to adenosine; 2) energy depletion activates the 2′,3′-cAMP-adenosine, but not the 3′,5′-cAMP-adenosine, pathway; and 3) although CD73 is involved in the 3′,5′-AMP-adenosine pathway, alternative pathways of 5′-AMP metabolism and reduced metabolism of adenosine to inosine compensate for life-long deficiency of CD73.

Publisher

American Physiological Society

Subject

Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 2′,3′-Cyclic Mononucleotide Metabolism and Possible Roles in Bacterial Physiology;Microbial Cyclic Di-Nucleotide Signaling;2020

2. 2′,3′-cGMP exists in vivo and comprises a 2′,3′-cGMP-guanosine pathway;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2019-06-01

3. Oxidative stress induces release of 2’-AMP from microglia;Brain Research;2019-03

4. Purines: forgotten mediators in traumatic brain injury;Journal of Neurochemistry;2016-02-25

5. Renal 2′,3′-Cyclic Nucleotide 3′-Phosphodiesterase Is an Important Determinant of AKI Severity after Ischemia-Reperfusion;Journal of the American Society of Nephrology;2015-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3