Expression profiling of hepatic genes associated with lipid metabolism in nephrotic rats

Author:

Zhou Yunfeng,Zhang Xiaoyan,Chen Lihong,Wu Jing,Dang Huaixin,Wei Mingfen,Fan Yanbo,Zhang Yahua,Zhu Yi,Wang Nanping,Breyer Matthew D.,Guan Youfei

Abstract

Hyperlipidemia is one of the major features of nephrotic syndrome (NS). Although many factors have been implicated in the pathogenesis of NS-related dyslipidemia, the underlying mechanisms remain largely uncharacterized. The present study was designed to examine the gene profile associated with lipid metabolism in the livers of nephrotic rats. NS was created in male Sprague-Dawley rats ( n = 6) receiving sequential intraperitoneal injections of puromycin aminonucleoside. Analysis by Affymetrix assay, quantitative RT-PCR, and Northern and Western blotting revealed 21 genes associated with cholesterol and fatty acid metabolism. Eight genes involved in cholesterol metabolism, Apo A-I, Acly, Acat, Mpd, Fdps, Ss, Lss, and Nsdhl, were significantly upregulated under NS. Four genes involved in fatty acid biosynthesis, Acc, FAS, ELOVL 2, and ELOVL6, and three critical for triglyceride biosynthesis, Gpam, Agpat 3, and Dgat 1, were significantly upregulated, whereas two genes involved in fatty acid oxidation, Dci and MCAD, were downregulated. Expression of several genes in sterol-regulatory element-binding protein (SREBP)-1 activation was also aberrantly altered in nephrotic livers. The expression and transcriptional activity of SREBP-1 but not SREBP-2 were increased in nephrotic rats as assessed by real-time PCR, immunoblotting, and gel shift assays. The upregulation of hepatic genes involved in cholesterol biosynthesis may play an important role in the pathogenesis of hypercholesterolemia, whereas upregulation of genes participating in hepatic fatty acid and triglyceride biosynthesis and downregulation of genes involved in hepatic fatty acid oxidation may contribute to hypertriglyceridemia in nephrotic rats. Activation of SREBP-1 transcription factor may represent an underlying molecular mechanism of hyperlipidemia in NS.

Publisher

American Physiological Society

Subject

Physiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3