Affiliation:
1. Departments of 1Pathology,
2. Ospedale Civile di Dolo, Venezia, Italia
3. Pediatrics, and
4. Hypertensiology and Nephrology, University of Erlangen-Nürnberg, Erlangen-Nürnberg;
5. Department of Internal Medicine, University of Regensburg, Regensburg;
6. Dialysis Centre Bad Aibling, Bad Aibling, Germany; and
Abstract
Uremic cardiomyopathy of men and rodents is characterized by lower myocardial capillary supply that in rats could be prevented by central and peripheral blockade of the sympathetic nervous system. The underlying pathomechanisms remain largely unknown. We investigated whether alterations of cardiac vascular endothelial growth factor (VEGF) gene and protein expression were involved. In our long-term experiment, we analyzed whether VEGF gene and protein expression was altered in the heart of male Sprague-Dawley rats with either sham operation (sham, n = 10) or subtotal nephrectomy (SNX, n = 10). In our short-term experiment (17 sham, 24 SNX), the effect of a putative downregulation of sympathetic nervous activity by surgical renal denervation (interruption of renal afferent pathways) on cardiac gene expression of VEGF, flt-1, and flk-1 and on myocardial capillary supply was analyzed. In the long-term study, cardiac capillary supply and vascular endothelial growth factor gene and protein expression were significantly lower in SNX than in sham. In the short-term experiment, cardiac VEGF mRNA expression was significantly lower in untreated SNX (4,258 ± 2,078 units) than in both sham groups (11,709 ± 4,169 and 8,998 ± 4,823 units); this decrease was significantly prevented by renal denervation (8,190 ± 3,889, P < 0.05). We conclude that cardiac VEGF gene and protein expression is reduced in experimental renal failure, and this may be considered as one potential reason for impaired myocardial adaptation under the situation of cardiac hypertrophy. The beneficial effect of sympathetic downregulation on cardiac structure and function in renal failure may be at least in part explained by increased cardiac VEGF gene expression.
Publisher
American Physiological Society
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献