Basolateral ammonium transport by the mouse inner medullary collecting duct cell (mIMCD-3)

Author:

Handlogten Mary E.,Hong Seong-Pyo,Westhoff Connie M.,Weiner I. David

Abstract

The renal collecting duct is the primary site for the ammonia secretion necessary for acid-base homeostasis. Recent studies have identified the presence of putative ammonia transporters in the collecting duct, but whether the collecting duct has transporter-mediated ammonia transport is unknown. The purpose of this study was to examine basolateral ammonia transport in the mouse collecting duct cell (mIMCD-3). To examine mIMCD-3 basolateral ammonia transport, we used cells grown to confluence on permeable support membranes and quantified basolateral uptake of the radiolabeled ammonia analog [14C]methylammonia ([14C]MA). mIMCD-3 cell basolateral MA transport exhibited both diffusive and transporter-mediated components. Transporter-mediated uptake exhibited a Kmfor MA of 4.6 ± 0.2 mM, exceeded diffusive uptake at MA concentrations below 7.0 ± 1.8 mM, and was competitively inhibited by ammonia with a Kiof 2.1 ± 0.6 mM. Transporter-mediated uptake was not altered by inhibitors of Na+-K+-ATPase, Na+-K+-2Clcotransporter, K+channels or KCC proteins, by excess potassium, by extracellular sodium or potassium removal or by varying membrane potential, suggesting the presence of a novel, electroneutral ammonia-MA transport mechanism. Increasing the outwardly directed transmembrane H+gradient increased transport activity by increasing Vmax. Finally, mIMCD-3 cells express mRNA and protein for the putative ammonia transporter Rh B-glycoprotein (RhBG), and they exhibit basolateral RhBG immunoreactivity. We conclude that mIMCD-3 cells express a basolateral electroneutral NH4+/H+exchange activity that may be mediated by RhBG.

Publisher

American Physiological Society

Subject

Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3