Proximal HCO3- reabsorption and the determinants of tubular and capillary PCO2 in the rat

Author:

Maddox D. A.,Atherton L. J.,Deen W. M.,Gennari F. J.

Abstract

Studies were carried out in Munich-Wistar rats to define the CO2 partial pressure (PCO2) profile in the surface tubules and capillaries of the kidney and to relate these measurements to proximal tubular HCO3- reabsorption, renal blood flow, and O2 consumption. In euvolemic rats, PCO2 in Bowman's space (BS) was 12.5 mmHg higher than in arterial blood, indicating CO2 addition to the arterial tree as it traverses the cortex. PCO2 further rose by 3.9 mmHg between the efferent arteriole (EA) and the peritubular capillaries (PC) (P less than 0.01) and by 4.9 mmHg between BS and the early proximal tubule (EP) (P less than 0.01). In studies with paired measurements, PCO2 in EP was 1.8 mmHg higher than in the adjacent PC (P less than 0.05). HCO3- reabsorption in EP (first 0.4-1.25 mm) was 579 pmol X min-1 X mm-1 (34.3 +/- 4.6% of the filtered load). By use of a model of facilitated diffusion of CO2 across the cell, the trans-epithelial PCO2 gradient in EP can be accounted for by the CO2 generated from HCO3- reabsorption, assuming an intracellular pH of 7.3. In the vascular compartment, roughly half the rise in PCO2 between the afferent arteriole (estimated to equal BS PCO2) and PC can be accounted for by metabolic CO2 production and half by titration of blood buffers by reabsorbed HCO3-.

Publisher

American Physiological Society

Subject

Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3