Quantitative characterization of the tubuloglomerular feedback response: effect of growth

Author:

Briggs J. P.,Schubert G.,Schnermann J.

Abstract

Studies were performed to characterize quantitatively the effect of changing loop of Henle flow rate on single nephron glomerular filtration rate (SNGFR) in male Sprague-Dawley rats of varying body weight. Rats weighing 100, 220, and 350 g were studied using standard renal micropuncture techniques. The relationship between loop of Henle flow rate (VLP) and SNGFR was characterized for individual nephrons by multiple determinations of SNGFR during loop perfusion. An inverse sigmoidal relationship was observed that could be described as delta SNGFR = a/(1 + ek(b-VLP], where delta SNGFR is the change in SNGFR from the value measured at zero loop flow, a is delta SNGFRmax, the maximum change, b is V1/2, the flow rate at which the response is half maximum, and k is [4f' (V1/2)]/a with f' (V1/2) the slope at V1/2. delta SNGFRmax increased with increasing body size (7.9 +/- 1.16, 18.9 +/- 0.90, and 25.2 +/- 2.73 nl/min, respectively, in the three groups), and the curve shifted to the right (V1/2 = 10.3 +/- 0.8, 15.4 +/- 0.83, and 22.3 +/- 1.22 nl/min). The maximum slope increased (f' (V1/2) = 0.9 +/- 0.19, 1.7 +/- 0.16, and 3.2 +/- 0.70), but the exponential constant k was uninfluenced by growth. Independent of rat size, a 10% increase in loop flow at the midpoint produced at 5-10% decrease in SNGFR. Free-flow values of SNGFR and VLP were found to lie in the most sensitive range of the feedback curve.

Publisher

American Physiological Society

Subject

Physiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tubule-vascular feedback in renal autoregulation;American Journal of Physiology-Renal Physiology;2019-06-01

2. A mathematical model of rat proximal tubule and loop of Henle;American Journal of Physiology-Renal Physiology;2015-05-15

3. Integrated Control of Na Transport along the Nephron;Clinical Journal of the American Society of Nephrology;2014-08-06

4. Function of the Juxtaglomerular Apparatus;Seldin and Giebisch's The Kidney;2013

5. Connecting tubule glomerular feedback mediates acute tubuloglomerular feedback resetting;American Journal of Physiology-Renal Physiology;2012-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3