Water-permeable and -impermeable barriers of snake distal tubules

Author:

Beyenbach K. W.

Abstract

Isolated perfused snake distal tubules transport Na from lumen bath via an amiloride-sensitive transport pathway. Elevation of the luminal Na concentration from 16 to 150 mM leads to non-steady-state electrical behavior and cell swelling. To elucidate the mechanism of cell swelling, the water permeabilities of the epithelium and its apical and basolateral membrane were assessed. Distal tubules were found to be virtually impermeable to transepithelial water flow. Hydraulic conductivity measured 1.2 X 10(-7) cm3 X s-1 X cm-2 X atm-1 in the absence or presence of vasopressin. Effects of transepithelial osmotic pressure gradients on epithelial cell volume revealed the luminal membrane as the water-impermeable cellular barrier and the basolateral membrane as a barrier that is freely permeable to water. Epithelial cell swelling was blocked during perfusion with 150 mM Na when the perfusate also contained amiloride (10(-5) M). These results support the hypothesis that, in the case of transepithelial transport in the presence of high luminal Na concentrations, Na entry across the apical membrane exceeds Na extrusion across the basolateral membrane. Hence, the cells accumulate solute: Na from the apical side and some anion from the apical and/or serosal side. Concomitantly, the epithelial cells swell as water enters across the highly permeable basolateral membrane.

Publisher

American Physiological Society

Subject

Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The plasticity of extracellular fluid homeostasis in insects;Journal of Experimental Biology;2016-09-01

2. Diluting and Concentrating Mechanism;Comparative Physiology of the Vertebrate Kidney;2016

3. Transport of Fluid by Renal Tubules;Comparative Physiology of the Vertebrate Kidney;2016

4. Transport of Inorganic Ions by Renal Tubules;Comparative Physiology of the Vertebrate Kidney;2016

5. Osmoregulation and Excretion;Comprehensive Physiology;2014-03-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3