Luminal hypotonicity: a driving force for fluid absorption from the proximal tubule

Author:

Green R.,Giebisch G.

Abstract

The ability of rat proximal tubules to generate a hypotonic luminal fluid was investigated. Simultaneous perfusion of tubules and peritubular capillaries was performed with simple solutions. When tubules were perfused at 10 nl X min-1 and NaCl was the perfusate for tubules and capillaries, solute and fluid (0.41 nl X min-1 X mm-1) were transported and the luminal fluid became hypotonic (delta osmol = -1.7 mosmol X kg-1). When the same solutions were used but the tubule was perfused at 45 nl X min-1, more fluid (0.89 nl X min-1 X mm-1) was reabsorbed and the fluid became more hypotonic (delta osmol = -3.9 mosmol X kg-1). Bicarbonate in the peritubular capillaries increased the fluid reabsorption (1.21 nl X min-1 X mm-1) but did not generate cryoscopically hypotonic fluid. Cyanide abolished all net movement of fluid and solute. It is concluded that the tubule can generate a hypotonic fluid, that the hydraulic conductivity for proximal tubular epithelium is 3,200-3,400 microns X s-1, and that the reflection coefficient for NaHCO3 is slightly higher than for NaCl.

Publisher

American Physiological Society

Subject

Physiology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transport of Fluid by Renal Tubules;Comparative Physiology of the Vertebrate Kidney;2016

2. Renal Autoregulation in Health and Disease;Physiological Reviews;2015-04

3. Fluid reabsorption in proximal convoluted tubules of mice with gene deletions of claudin-2 and/or aquaporin1;American Journal of Physiology-Renal Physiology;2013-11-01

4. Cerebrospinal Fluid Secretion by the Choroid Plexus;Physiological Reviews;2013-10

5. Proximal Nephron;Comprehensive Physiology;2013-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3