Role of iNOS and eNOS in modulating proximal tubule transport and acid-base balance

Author:

Wang Tong1

Affiliation:

1. Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520

Abstract

Our laboratory has previously shown that mice lacking neuronal nitric oxide synthase (nNOS) are defective in fluid absorption ( J v) and HCO[Formula: see text]absorption ( J HCO3) in the proximal tubule and develop metabolic acidosis. The present study examined the transport of fluid and HCO[Formula: see text] in the proximal tubule and acid-base status in mice lacking two other isoforms of NOS, inducible NOS (iNOS) and endothelial NOS (eNOS). Proximal tubules were microperfused in situ in wild-type and NOS knockout mice by methods previously described (Wang T, Yang C-L, Abbiati T, Schultheis PJ, Shull GE, Giebisch G, and Aronson PS. Am J Physiol Renal Physiol 277: F298–F302, 1999). [3H]inulin and total CO2 concentrations were measured in the perfusate and collected fluid, and net J v and J HCO3 were analyzed. These data show that J HCO3 was 35% lower (71.7 ± 6.4 vs. 109.9 ± 7.3 pmol · min−1 · mm−1, n = 13, P < 0.01) and J v was 38% lower (0.95 ± 0.15 vs. 1.54 ± 0.17 nl · min−1 · mm−1, n = 13, P < 0.05) in iNOS knockout mice compared with their wild-type controls. Addition of the iNOS-selective inhibitor l- N 6-(1-iminoethyl) lysine, reduced both J v and J HCO3 significantly in wild-type, but not in iNOS knockout, mice. In contrast, both J HCO3(93.3 ± 7.9 vs. 110.6 ± 6.18 pmol · min−1 · mm−1) and J v (1.56 ± 0.17 vs. 1.55 ± 0.16 nl · min−1 · mm−1) did not change significantly in eNOS knockout mice. These results indicated that iNOS upregulates Na+ and HCO[Formula: see text]transport, whereas eNOS does not directly modulate Na+ and HCO[Formula: see text] transport in the kidney proximal tubules.

Publisher

American Physiological Society

Subject

Physiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3