Lumen LPS inhibits HCO3− absorption in the medullary thick ascending limb through TLR4-PI3K-Akt-mTOR-dependent inhibition of basolateral Na+/H+ exchange

Author:

Watts Bruns A.1,George Thampi1,Good David W.12

Affiliation:

1. Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; and

2. Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas

Abstract

Sepsis and endotoxemia induce defects in renal tubule function, but the mechanisms are poorly understood. Recently, we demonstrated that lipopolysaccharide (LPS) inhibits HCO3 absorption in the medullary thick ascending limb (MTAL) through activation of different Toll-like receptor 4 (TLR4) signaling pathways in the basolateral and apical membranes. Basolateral LPS inhibits HCO3 absorption through ERK-dependent inhibition of the apical Na+/H+ exchanger NHE3. Here, we examined the mechanisms of inhibition by lumen LPS. Adding LPS to the lumen decreased HCO3 absorption by 29% in rat and mouse MTALs perfused in vitro. Inhibitors of phosphoinositide 3-kinase (PI3K) or its effectors Akt and mammalian target of rapamycin (mTOR) eliminated inhibition of HCO3 absorption by lumen LPS but had no effect on inhibition by bath LPS. Exposure to LPS for 15 min induced increases in phosphorylation of Akt and mTOR in microdissected MTALs that were blocked by wortmannin, consistent with activation of Akt and mTOR downstream of PI3K. The effects of lumen LPS to activate Akt and inhibit HCO3 absorption were eliminated in MTALs from TLR4−/− and MyD88−/− mice but preserved in tubules lacking Trif or CD14. Inhibition of HCO3 absorption by lumen LPS was eliminated under conditions that inhibit basolateral Na+/H+ exchange and prevent inhibition of HCO3 absorption mediated through NHE1. Lumen LPS decreased basolateral Na+/H+ exchange activity through PI3K. We conclude that lumen LPS inhibits HCO3 absorption in the MTAL through TLR4/MyD88-dependent activation of a PI3K-Akt-mTOR pathway coupled to inhibition of NHE1. Molecular components of the TLR4-PI3K-mTOR pathway represent potential therapeutic targets for sepsis-induced renal tubule dysfunction.

Publisher

American Physiological Society

Subject

Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3