Identification of persistently altered gene expression in the kidney after functional recovery from ischemic acute renal failure

Author:

Basile David P.,Fredrich Katherine,Alausa Morufu,Vio Carlos P.,Liang Mingyu,Rieder Mark R.,Greene Andrew S.,Cowley Allen W.

Abstract

Recovery from ischemic acute renal failure (ARF) involves a well-described regenerative process; however, recovery from ARF also results in a predisposition to a progressive renal disease that is not well understood. This study sought to identify alterations in renal gene expression in postischemic, recovered animals that might play important roles in this progressive disorder. RNA isolated from sham-operated control rats or rats 35 days after recovery from bilateral ischemia-reperfusion (I/R) injury was compared using a cDNA microarray containing ∼2,000 known rat genes. A reference hybridization strategy was utilized to define a 99.9% interval and to identify 16 genes that were persistently altered after recovery from I/R injury (12 were upregulated and 4 were downregulated). Real-time PCR verified the altered expression of six of eight genes that had been positively identified. Several genes that were identified had not previously been evaluated within the context of ARF. S100A4, a specific marker of fibroblasts, was identified in a population of interstitial cells that were present postischemic injury. S100A4-positive cells were also identified in tubular cells at earlier time points postischemia. Genes associated with calcification, including osteopontin and matrix Gla protein, were also enhanced postischemic injury. Several proinflammatory genes were identified, including complement C4, were enhanced in postischemic tissues. Conversely, renal kallikrein expression was specifically reduced in the postischemic kidney. In summary, genes with known inflammatory, remodeling, and vasoactive activities were identified in rat kidneys after recovery from ARF, some of which may play a role in altering long-term renal function after recovery from ARF.

Publisher

American Physiological Society

Subject

Physiology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3