Glomerular permeability to macromolecules in theNecturuskidney

Author:

Tanner George A.,Rippe Catarina,Shao Youzhi,Evan Andrew P.,Williams James C.

Abstract

Many aspects of the glomerular filtration of macromolecules remain controversial, including the location of the major filtration barrier, the effects of electrical charge, and the reason the filtration barrier does not clog. We examined these issues in anesthetized Necturus maculosus, using fluorescently labeled probes and a two-photon microscope. With the high resolution of this system and the extraordinary width (∼3.5 μm) of the glomerular basement membrane (GBM) in this salamander, we were able to visualize fluorescent molecules in the GBM in vivo. GBM/plasma concentration ratios for myoglobin, ovalbumin, and serum albumin did not differ from that of inulin, indicating that the GBM does not discriminate among these molecules. The GBM/plasma concentration ratios for fluoresceinated dextran 500 and 2,000 kDa were significantly below that of inulin. Glomerular sieving coefficients (GSCs) for various macromolecules decreased as molecular mass increased, and the GSCs for bovine or human serum albumin were extremely low. The effect of electrical charge on filterability of a macromolecule was also examined. The GSCs for native (anionic) and neutral human serum albumin were not significantly different, nor did GSCs for anionic and neutral dextran 40 kDa differ, indicating that charge has no detectable effect on filterability of these macromolecules. These studies indicate that the main filtration barrier to albumin is the podocyte slit diaphragm. Electron microscopic studies revealed many cell processes within the GBM. Macromolecules that penetrated the GBM were taken up by mesangial cells and endothelial cells, suggesting that these cells help to prevent clogging of the filter.

Publisher

American Physiological Society

Subject

Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3