Renin expression in large renal vessels during fetal development depends on functional β1/β2-adrenergic receptors

Author:

Neubauer Björn1,Machura Katharina1,Schnermann Jürgen2,Wagner Charlotte1

Affiliation:

1. Physiologisches Institut, Universität Regensburg, Regensburg, Germany; and

2. National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland

Abstract

During nephrogenesis, renin expression shifts from large renal arteries toward smaller vessels in a defined spatiotemporal pattern, finally becoming restricted to the juxtaglomerular position. Chronic stimulation in adult kidneys leads to a recruitment of renin expression in the upstream vasculature. The mechanisms that control this characteristic switch-on and switch-off in the immature and adult kidney are not well-understood. Previous studies in mice with juxtaglomerular cell-specific deletion of the adenylyl cyclase-stimulatory G protein Gsα suggested that signaling along the cAMP pathway plays an essential role for renin expression during nephrogenesis and in the adult kidney. To identify the Gsα-dependent receptor that might be involved in activating this pathway, the present studies were performed to compare renin expression in wild types with that in mice with targeted deletions of β1 and β2-adrenoceptors. The sympathetic nervous system is an important regulator of the renin system in the adult kidney so that activation of β-adrenenoceptors may also participate in the activation of renin expression along the developing arterial tree and in upstream vasculature in adulthood. Compared with wild-types, renin expression was found to be significantly lower at all developmental stages in the kidneys of β12 Adr−/− mice. Three-dimensional analysis showed reduced renin expression in all segments of the vascular tree in mutants and a virtual absence of renin expression in the large arcuate arteries. Adult mutant kidneys showed the typical upstream renin expression after chronic stimulation. Tyrosine hydroxylase staining in fetal and postnatal kidneys revealed that sympathetic innervation of renin-producing cells occurs early in fetal development. Our data indicate that genetic disruption of β-adrenergic receptors reduces basal renin expression along the developing preglomerular tree and in adult kidneys. Furthermore, β-adrenergic receptor input is critical for the expression of renin in large renal vessels during early fetal development.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3