Affiliation:
1. Division of Nephrology,
2. Laboratory of Molecular Imaging and Experimental Radiotherapy, and
3. de Duve Institute, CELL Unit, Université catholique de Louvain Medical School, Brussels, Belgium
Abstract
Noninvasive analysis of renal function in conscious mice is necessary to optimize the use of mouse models. In this study, we evaluated whether single photon emission-computed tomography (SPECT) using specific radionuclear tracers can be used to analyze changes in renal proximal tubule functions. The tracers included 99mTC- dimercaptosuccinic acid (99mTc-DMSA), which is used for cortex imaging; 99mTc-mercaptoacetyltriglycine (99mTc-MAG3), used for dynamic renography; and 123I-β2-microglobulin, which monitors receptor-mediated endocytosis. 99mTc-DMSA SPECT imaging was shown to delineate the functional renal cortex with a ∼1-mm spatial resolution and accumulated in the cortex reaching a plateau 5 h after injection. The cortical uptake of 99mTc-DMSA was abolished in Clcn5 knockout mice, a model of proximal tubule dysfunction. Dynamic renography with 99mTc-MAG3 in conscious mice demonstrated rapid extraction from blood, renal accumulation, and subsequent tubular secretion. Anesthesia induced a significant delay in the 99mTc-MAG3 clearance. The tubular reabsorption of 123I-β2-microglobulin was strongly impaired in the Clcn5 knockout mice, with defective tubular processing and loss of the native tracer in urine, reflecting proximal tubule dysfunction. Longitudinal studies in a model of cisplatin-induced acute tubular injury revealed a correlation between tubular recovery and 123I-β2-microglobulin uptake. These data show that SPECT imaging with well-validated radiotracers allows in vivo investigations of specific proximal tubule functions in conscious mice.
Publisher
American Physiological Society
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献