Contribution of Cav1.2 Ca2+ channels and store-operated Ca2+ entry to pig urethral smooth muscle contraction

Author:

Rembetski Benjamin E.1,Sanders Kenton M.1,Drumm Bernard T.1ORCID

Affiliation:

1. Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno Nevada

Abstract

Urethral smooth muscle (USM) generates tone to prevent urine leakage from the bladder during filling. USM tone has been thought to be a voltage-dependent process, relying on Ca2+ influx via voltage-dependent Ca2+ channels in USM cells, modulated by the activation of Ca2+-activated Cl channels encoded by Ano1. However, recent findings in the mouse have suggested that USM tone is voltage independent, relying on Ca2+ influx through Orai channels via store-operated Ca2+ entry (SOCE). We explored if this pathway also occurred in the pig using isometric tension recordings of USM tone. Pig USM strips generated myogenic tone, which was nearly abolished by the Cav1.2 channel antagonist nifedipine and the ATP-dependent K+ channel agonist pinacidil. Pig USM tone was reduced by the Orai channel blocker GSK-7975A. Electrical field stimulation (EFS) led to phentolamine-sensitive contractions of USM strips. Contractions of pig USM were also induced by phenylephrine. Phenylephrine-evoked and EFS-evoked contractions of pig USM were reduced by ~50–75% by nifedipine and ~30% by GSK-7975A. Inhibition of Ano1 channels had no effect on tone or EFS-evoked contractions of pig USM. In conclusion, unlike the mouse, pig USM exhibited voltage-dependent tone and agonist/EFS-evoked contractions. Whereas SOCE plays a role in generating tone and agonist/neural-evoked contractions in both species, this dominates in the mouse. Tone and agonist/EFS-evoked contractions of pig USM are the result of Ca2+ influx primarily through Cav1.2 channels, and no evidence was found supporting a role of Ano1 channels in modulating these mechanisms.

Funder

Nevada Undergraduate Research Grant

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3