Role of WNK4 and kidney-specific WNK1 in mediating the effect of high dietary K+ intake on ROMK channel in the distal convoluted tubule

Author:

Wu Peng1,Gao Zhong-Xiuzi1,Su Xiao-Tong1,Ellison David H.2,Hadchouel Juliette34,Teulon Jacques4,Wang Wen-Hui1

Affiliation:

1. Department of Pharmacology, New York Medical College, Valhalla, New York

2. Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon

3. Institut National de la Santé et de la Recherche Médicale, UMR_S1155, University Pierre et Marie Curie, Hospital Tenon, Paris, France

4. University Pierre et Marie Curie, Centre de Recherches des Cordeliers, UMR_S1138, Paris, France

Abstract

With-no-lysine kinase 4 (WNK4) and kidney-specific (KS)-WNK1 regulate ROMK (Kir1.1) channels in a variety of cell models. We now explore the role of WNK4 and KS-WNK1 in regulating ROMK in the native distal convoluted tubule (DCT)/connecting tubule (CNT) by measuring tertiapin-Q (TPNQ; ROMK inhibitor)-sensitive K+ currents with whole cell recording. TPNQ-sensitive K+ currents in DCT2/CNT of KS- WNK1−/− and WNK4−/− mice were significantly smaller than that of WT mice. In contrast, the basolateral K+ channels (a Kir4.1/5.1 heterotetramer) in the DCT were not inhibited. Moreover, WNK4−/− mice were hypokalemic, while KS- WNK1−/− mice had normal plasma K+ levels. High K+ (HK) intake significantly increased TPNQ-sensitive K+ currents in DCT2/CNT of WT and WNK4−/− mice but not in KS- WNK1−/− mice. However, TPNQ-sensitive K+ currents in the cortical collecting duct (CCD) were normal not only under control conditions but also significantly increased in response to HK in KS- WNK1−/− mice. This suggests that the deletion of KS-WNK1-induced inhibition of ROMK occurs only in the DCT2/CNT. Renal clearance study further demonstrated that the deletion of KS-WNK1 did not affect the renal ability of K+ excretion under control conditions and during increasing K+ intake. Also, HK intake did not cause hyperkalemia in KS- WNK1−/− mice. We conclude that KS-WNK1 but not WNK4 is required for HK intake-induced stimulation of ROMK activity in DCT2/CNT. However, KS-WNK1 is not essential for HK-induced stimulation of ROMK in the CCD, and the lack of KS-WNK1 does not affect net renal K+ excretion.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

Publisher

American Physiological Society

Subject

Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3